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Abstract 

Transportation networks are unprecedentedly complex with heterogeneous vehicular fow. Conventionally, 
vehicle classes are considered by vehicle classifcations (such as standard passenger cars and trucks). However, 
vehicle fow heterogeneity stems from many other aspects in general, e.g., ride-sourcing vehicles versus personal 
vehicles, human driven vehicles versus connected and automated vehicles. Provided with some observations of ve-
hicular fow for each class in a large-scale transportation network, how to estimate the multi-class spatio-temporal 
vehicular fow, in terms of time-varying Origin-Destination (OD) demand and path/link fow, remains a big chal-
lenge. This paper presents a solution framework for multi-class dynamic OD demand estimation (MCDODE) in 
large-scale networks. The proposed framework is built on a computational graph with tensor representations of 
spatio-temporal fow and all intermediate features involved in the MCDODE formulation. A forward-backward 
algorithm is proposed to effciently solve the MCDODE formulation on computational graphs. In addition, we 
propose a novel concept of tree-based cumulative curves to estimate the gradient of OD demand. A Growing Tree 
algorithm is developed to construct tree-based cumulative curves. The proposed framework is examined on a small 
network as well as a real-world large-scale network. The experiment results indicate that the proposed framework 
is compelling, satisfactory and computationally plausible. 

1. Introduction 

Transportation networks are unprecedentedly complex with heterogeneous vehicular fow. Conventionally, ve-
hicle heterogeneity are considered by vehicle classifcations (such as standard passenger cars and trucks). However, 
vehicle fow heterogeneity stems from many other aspects in general, e.g., ride-sourcing vehicles versus personal 

5 vehicles, human driven vehicles versus connected and automated vehicles. How to effectively manage the multi-
class vehicles in a complex transportation system so as to improve the network effciency presents a big challenge. 
As an indispensable component of dynamic transportation network models with heterogeneous traffc, the multi-
class dynamic origin-destination (OD) demand plays a key role in transportation planning and management to 
understand spatio-temporal vehicular fow and its travel behavior. To our best knowledge, there is a lack of stud-

10 ies to understand and estimate the dynamic OD demand of multiple vehicle classes using sparse and partial fow 
observations. In view of this, this paper presents a data-driven framework for multi-class dynamic OD demand 
estimation (MCDODE) in large-scale networks. The MCDODE formulation is represented on a computational 
graph, and a novel forward-backward algorithm is proposed to estimate the OD demand effciently and effectively. 
The proposed MCDODE framework is examined in a small networks as well as a real-world large-scale network 

15 to demonstrate the estimation accuracy and the computational effciency. 
The multi-class dynamic OD demand (MCDOD) represents the number of vehicles in each of the vehicle 

classes (e.g. personal cars, trucks, ride-sourcing vehicles) departing from an origin and heading to a destination 
in a particular time interval. The defnition of “classes” is very general, by vehicle sizes, specifcations, and 
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nature of trips. The MCDOD reveals the fne-gained traffc demand information for different vehicle classes 
20 and the overall spatio-temporal mobility patterns can be inferred from the OD demand and its resultant path/link 

fows. Policymakers can understand the departure/arrival patterns of multi-class vehicles through the MCDOD. The 
MCDOD also helps the policymakers understand the impact of each vehicle class on the roads, and hence each class 
of vehicles can be managed separately. In addition, most of Advanced Traveler Information Systems/Advanced 
Traffc Management Systems (ATIS/ATMS) would require accurate MCDOD as the model input (Huang & Li 

25 2007). 
The dynamic OD estimation (DODE) has been extensively studied over the past few decades. A general-

ized least square (GLS) formulation is proposed for estimating dynamic OD demand with exogenous route choice 
model (Cascetta et al. 1993). The GLS formulation is further extended to a bi-level optimization problem, and 
the bi-level formulation solves for the DODE with endogenous route choice model (Tavana 2001). Advantages 

30 and disadvantages of the bi-level formulation are discussed in Nguyen (1977), LeBlanc & Farhangian (1982), Fisk 
(1989), Yang et al. (1992), Florian & Chen (1995), Jha et al. (2004). The Stochastic Perturbation Simultaneous 
Approximation (SPSA) methods have also been adopted to solve the bi-level formulation in many studies (Balakr-
ishna et al. 2008, Cipriani et al. 2011, Lee & Ozbay 2009, Vaze et al. 2009, Ben-Akiva et al. 2012, Lu et al. 2015, 
Tympakianaki et al. 2015, Antoniou, Azevedo, Lu, Pereira & Ben-Akiva 2015). Zhang et al. (2017), Osorio (2019) 

35 proposed an instantaneous approximation for the dynamic traffc assignment models, and the DODE problem is 
cast into a convex optimization which can be solved effciently. The bi-level formulation can also be relaxed to a 
single-level problem and solved by updating the OD demand using gradient-based methods (Nie & Zhang 2008, 
Lu et al. 2013). 

The DODE problem can be viewed as a statistical estimation problem. For example, a statistical inference 
40 framework using Markov Chain Monte Carlo algorithm was proposed to estimate the probabilistic OD demand 

(Hazelton 2008). Zhou et al. (2003) proposed a DODE framework with multi-day data and established a hypothesis 
testing framework to identify the demand evolution within a week. In addition to the off-line DODE methods, the 
DODE formulation can also be solved with real-time data streams for ATIS/ATMS applications. Bierlaire & Crittin 
(2004) extended the GLS formulation on large-scale networks and solved the formulation effciently on a real-time 

45 basis. The state-space models are also used to estimate the dynamic OD of each time interval sequentially (Zhou 
& Mahmassani 2007, Ashok & Ben-Akiva 2000). 

The DODE methods often encapsulate the dynamic traffc assignment (DTA) models within the bi-level formu-
lation. Various DTA models can be adopted to model the network dynamics and travelers’ behaviors. For example, 
Dynamic Network Loading (DNL) models (Ma et al. 2008) simulate the vehicle trajectories and traffc conditions 

50 given determined the origin-destination (O-D) demand and fxed routes; Dynamic User Equilibrium (DUE) models 
(Mahmassani & Herman 1984, Nie & Zhang 2010) search for the equilibrated travelers’ route choices to achieve 
user optima; Dynamic System Optimal (DSO) models (Shen et al. 2007, Qian et al. 2012, Ma et al. 2014) explore 
the optimal conditions under which the total network costs are minimized. 

The multi-class traffc assignment models and OD estimation models can be built by extending the single-class 
55 models. However, the main challenges are how to estimate MCDOD in such a way to match multi-source spatio-

temporal data in a large-scale transportation network. A number of studies (Gundaliya et al. 2008, Venkatesan et al. 
2008, Qian et al. 2017) investigate the multi-class traffc fows in general networks. The multi-class DTA models 
are studied by Dafermos (1972), Yang & Huang (2004), Huang & Li (2007) without the real-world data validation. 
There are studies estimating the static OD demand for multiple vehicle classes (Wong et al. 2005, Raothanachonkun 

60 et al. 2006, Noriega & Florian 2007, Zhao et al. 2018). In particular, Shao et al. (2015) estimated the probabilistic 
distribution of the multi-class OD using traffc counts. The research gap lies in estimating MCDOD in large-scale 
networks that are consistent with real-world multi-source traffc data. 

In this paper, we develop a data-driven framework that estimates the multi-class dynamic OD demand using 
traffc counts and travel time data that are partially observed in general networks. The proposed framework for-

65 mulates the MCDODE problem and represents it with a computational graph. The MCDODE is solved with a 
novel forward-backward algorithm on the computational graph. The MCDODE framework can be solved using 
multi-core CPUs or Graphics Processing Units (GPUs), and hence the proposed method can be computational 
effcient and applied to the large-scale networks and multi-day data. The closest work to this paper is that of Wu 
et al. (2018), which constructs a layered computational graph for the single-class static OD estimation problem. 

70 This paper extends the computational graph approach to the case of multi-class dynamic OD demand by tackling 
additional challenges on the incorporating fow dynamics and characteristics across both classes and time of day. 
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We also build a novel framework to evaluate the gradients of multi-class OD demand for simulation-based traffc 
assignment models. The main contributions of this paper are summarized as follows: 

1) We propose a theoretical formulation for estimating multi-class dynamic OD demand. The formulation is 
75 represented on a computational graph such that the MCDODE can be solved for large-scale networks with 

large-scale traffc data. The proposed MCDODE formulation can handle any form of traffc data, such as 
fow, speed or trip cost. 

2) We propose a novel forward-backward algorithm to solve for the MCDODE formulation on the constructed 
computational graph with simulation-based traffc assignment models. 

80 3) We use a tree-based cumulative curves to evaluate the gradient of multi-class dynamic OD demand in the 
forward-backward algorithm, and a Growing Tree algorithm is proposed to construct the tree-based cumula-
tive curves during the traffc simulation. 

4) We examine the proposed MCDODE framework on a large-scale network to demonstrate its effectiveness 
and computational effciency of the solution algorithm. 

85 The remainder of this paper is organized as follows. Section 2 presents the formulation details of MCDODE. 
Section 3 describes the solution pipeline and discusses practical issues for MCDODE framework. In section 4, 
a small network is used to demonstrate the accuracy, effciency and robustness of the MCDODE framework. In 
addition, we demonstrate the scalability and computational effciency of the proposed framework using real-world 
data in a large-scale network. At last, conclusions are drawn in section 5. 

90 2. Formulation 

In this section, we discuss the multi-class dynamic origin-destination estimation (MCDODE) framework. We 
frst present the notations used in this paper, and then the multi-class dynamic network fow is modeled. Secondly, 
the MCDODE problem is formulated and represented on a computational graph. We then solve the MCDODE 
through a novel forward-backward algorithm. 

95 2.1. Notations 

Notations are summarized in Table 1. 

Table 1: List of notations 

A The set of all links 
Kq The set of all OD pairs 
Krs The set of all paths between OD pair rs 
B The set of indices of the observed fow 
E The set of indices of the observed travel time 
H The set of all time intervals 
D The set of vehicle classes 

Variables as scalars 
h1 The index of departure time interval of path fow or OD fow 
h2 The index of arrival time interval at the tail of link 
i index of vehicle class 
xh2 

ai The fow arriving at the tail of link a in time interval h2 for vehicle class 
i 

th2 
ai The link travel time of link a in time interval h2 for vehicle class i 

qh1 The fow of OD pair rs rsi in time interval h1 for vehicle class i
f kh1 
rsi The kth path fow for OD pair rs in time interval h1 for vehicle class i 

pkh1
rsi The route choice portion of choosing path k in all paths between OD 

pair rs in time interval h1 for vehicle class i 
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ckh1 The path travel time of kth path for OD pair rs rsi in time interval h1 for
vehicle class i 

Lbh2 
ai The observation/link incidence for link a in time interval h2 and ob-

served fow b for vehicle class i 
Meh2 h2 

ai The weight of travel time for tai in the observed travel time e
kaρ  
rsi(h1, h2) The portion of the kth path fow departing within time interval h1 be-

tween OD pair rs which arrives at link a within time interval h2 for 
vehicle class i (namely, an entry of the DAR matrix) 

yb The bth observed fow, which might be a linear combination of link fow 
across vehicle classes, road segments and over time intervals 

ze The eth observed travel time, which might be a linear combination of 
link travel time across vehicle classes, road segments and over time 
intervals 

Variables as tensors 
y The vector of the observed fow 
z The vector of the observed travel time 
xi The vector of link fow for vehicle class i 
ti The vector of link travel time for vehicle class i 
fi The vector of path fow for vehicle class i 
ci The vector of path travel time for vehicle class i 
Li The observation/link incidences matrix for vehicle class i 
Mi The travel time weight matrix for vehicle class i 
pi The matrix of route choice portions for vehicle class i 
ρi The dynamic assignment ratio (DAR) matrix for vehicle class i 

2.2. Modeling multi-class dynamic network fow 
In this section, we frst formulate a general network model for multi-class traffc fow in discrete time. We 

denote the path fow f kh1 
rsi as the number of class-i vehicles departing from kth path for OD pair rs in time interval 

100 h1 and link fow xh2 
 as the number of class-i vehicles arriving at the of link a ai tail in time interval h2. The relationship 

between path fow and link fow is presented in Equation 1. X X X 
xh2 ka = ρai rsi(h

k
1, h2) f h1 

rsi (1)
rs∈Kq k∈Krs h1∈H 

where Kq is the set of all OD pairs, and Krs is the path set for OD pair rs. H is the set of all possible time intervals 
during study period. To avoid confusion, we denote departure time interval of path fow or OD fow as h1, and the 
arrival time interval at the tail of link as h2, respectively. The dynamic assignment ratio (DAR) kaρ  

 (h , rsi 1 h2) denotes
105 the portion of the kth path fow departing within time interval h1 for OD pair rs which arrives at link a within time 

interval h2 for vehicle class i (Ma & Qian 2018b). For each OD pair rs, there are Krs paths for travelers to choose
from, and the portion of choosing path k in time interval h kh1

1 for vehicle class i is denoted as prsi . The OD fow and 
path fow for vehicle class i can be represented by Equation 2. 

f kh1 kh
= 1 

  p rsi rsi q
h1 
rsi (2)

where OD demand qh1 
rsi represents the number of class-i vehicles for OD pair rs in time interval h1. The link travel 

110 time, path travel time and DAR can be obtained from the dynamic network loading (DNL) models, as presented in 
Equation 3. 

n o 
th2 kh, 1 = Λai  c ka , ρ ,  rsi rsi(h1 h2) (  h

{ f k 1 }rsi i,r,s,k,h1 ) (3)
r,s,i,k,a,h1,h2 

where Λ(·) represents the multi-class dynamic network loading models. The travel time can be generalized to any 
form of the disutility as long as it can be simulated by Λ. The generalized travel time can include roads tolls, 
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left turn penalty, travelers’ preferences and so on. The DNL function Λ takes the multi-class path fow as input
h2 kh1

115 and outputs the spatio-temporal network conditions {t ,ai  c }rsi  and the DAR matrix kaρ  (h1, rsi h2). Though there exists 
analytical solutions in small networks, Λ is usually represented by simulation-based models in large-scale net-
works. Many existing models including, but are not limited to, DynaMIT (Ben-Akiva et al. 1998), DYNASMART 
(Mahmassani et al. 1992), DTALite (Zhou & Taylor 2014) and MAC-POSTS (Ma et al. 2016, Pi et al. 2018), can 
be potentially used as function Λ. 

120 The route choice portion pkh1 
rsi is obtained from a generalized route choice function, as presented in Equation 4. � �

pk h1 k kh
= 1 h
Ψ 1

si r si c̃ , ˜rsi  r tai  (4)

n o
c̃kh1 = ckh0 | rsi h

0 ≤ h1, h0 ∈ H, rs ∈ Kq, k ∈ r s  si Kr , i ∈ D (5) n o
t̃h1 
ai = th0 |  A, i ∈ai h

0 ≤ h1, h0 ∈ H, a ∈  D (6) 

where kh
Ψ 1

rsi (·.·) is a generalized route choice model that takes in the path travel time and link travel time before time 
interval h1 and computes the route choice portion for travelers in kth path of OD rs for vehicle class i. We further 
denote th2 

ai as the travel time of link a in time interval h2 for vehicle class i, and c kh1
rsi as the travel time of path fow k

in OD pair rs departing in time interval h1. Most of the state-of-art route choice models (Prashker & Bekhor 2004, 
125 Zhou et al. 2012), including Logit and Probit models, satisfy Equation 4. The Logit and Probit models have been 

adopted in many studies and achieved great success in real-world applications (Maher et al. 2001). Combining 
Equation 1 and 2, we present the relation of link fow and OD fow in Equation 7. X X X 

x h2 ka kh
= ρ , 1 h1

ai  rsi(h1  h2)prsi qrsi (7)
rs∈Kq k∈Krs h1∈H 

2.3. Modeling the observed fow and observed travel time 

In this section, we describe the concept of the observed fow and observed travel time. The motivation for the 
130 defnition of the observed fow and travel time lies in the indirect and aggregated observations of traffc networks. 

For example, loop detectors measure the traffc counts in each time interval, but the vehicle classes cannot be 
differentiated. The Department of Transportation regularly hire individuals to count the vehicles on road segments 
for both directions and different vehicle classes. In this case, the observation of traffc fow does not differentiate 
road directions. 

135 To accommodate different kinds of fow observations, we propose the concept of observed fow, denoted by yb, 
as a linear combination of link fow across vehicle classes, road segments and time intervals. The formulation of 
the observed fow is presented in Equation 8. XX X 

y = Lbh2 h
b x 2 

ai ai (8)
i∈D a∈A h2∈H 

where b ∈ B is the index of observed fow and B is the set of indices of observed fow. The unit of yb is the same 
as xh2 

ai . For example, if there are two loop detectors recording the traffc counts in each interval, then we have 
140 |B| = 2|H|. By formulation 8, the observed fow can be the traffc count observations in various forms, including 

traffc counts of a single-class vehicles, aggregated traffc counts of all vehicles, aggregated traffc counts of a road 
for both directions, and aggregated traffc counts of multiple links. The link/observation incidence Lbh2 

ai represents
how the observed fow is aggregated. Lbh2 

ai is 1 if link fow x h2 is observed in the observed fow yb and 0 ai otherwise,
and a similar defnition can be found in Yang et al. (2018). 

145 Similarly, we may also observe the travel time across multiple links, vehicle classes and time intervals. For 
example, we may observe the total travel time of a highway which consists of multiple consecutive links, or we 
may observe the average travel time of car and trucks in a single link. To accommodate different kinds of travel 
time observations, we assume the observed travel time can be represented by a linear combination of all link travel 
time, as presented in Equation 9. 
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r 

sLink 2

160 

XX X 
z  eh

e  = M 2 
ai t h2  

ai (9) 
i∈D a∈A h2∈H 

150 where  
 Meh2

ai represents the weight of travel time for th2 
ai in the observed travel time e. The unit of ze is the same as 

th2 ∈ai . e  E is the index of observed travel time and E is the set of indices of observed travel time. The formulation 9 
is also general enough to accommodate various types of travel time observations. For example, the observed travel 
time includes link travel time of a single-class vehicles, path travel time of single-class vehicles, average travel 
time of all vehicle classes. We note that Meh2 ∈   1] ai [0, since we may observe the average travel time of multiple 

155 links, while Lbh2 ∈  { 0, 1} ai because traffc fow is usually observed in an aggregated manner. 

Example 1. To illustrate the formulation of the observed fow and observed travel time, we consider a two-link 
network presented in Figure 1. We only consider one time interval, hence |H| = 1. We assume vehicle class 1 
represents cars, and vehicle class 2 represents trucks. 

tLink 1

Figure 1: A two-link network 

Suppose we observe 50 cars passing link 1 and 150 vehicles (trucks and cars) passing link 2, then we have 

y1 = 50 

y2 = 150 

Lb=1,h2=1 
= 1 a=1,i=1 

Lb=1,h2=1 
= 0 a=1,i=2 

Lb=2,h2=1 
= 1 a=2,i=1 

Lb=2,h2=1 
= 1 a=2,i=2 

Therefore 

Lb=1,h2=1 h2 =1 =1 h2=1y1 = xa=1,i=1 + Lb=1,h2 x a=1,i=1 a=1,i=2 a=1,i=2 
h2=1 

= x a=1,i=1 

Lb=2,h2=1 h2 =1 =1 h2=1y2 = xa=2,i=1 + Lb=2,h2 x a=2,i=1 a=2,i=2 a=2,i=2 
h2=1 h2=1 

= x a=2,i=1 + xa=2,i=2 

Similarly, if we observe the travel time for traversing link 1 and link 2 is 100 for cars, and the average travel 
time of link 2 is 70 for cars and trucks. 

z1 = 100 

z2 = 70 

Me=1,h2=1 
= 1 a=1,i=1 

Me=1,h2=1 
= 1 a=2,i=1 

Me=2,h2=1 
= 0.5 a=2,i=1 

Me=2,h2=1 
= 0.5 a=2,i=2 
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Then we have 

z  Me=1,h2=1th2=1 e=1,h2 =1 h
1 = 2=1

+a=1,i=1 a=1,i=   1 Ma=2,i=1 ta=2,i=1 

= th2 =1 2 =1 
+a=1 ,i=1  th

a=2,i=1 

z  Me=2,h2=1 h2=1 
2 = +

= , =  t
= , =   Me=2,h2 =1 h2 1

a 2 i 1 a 2 i 1 a=2,i=2 t =

a=2,i=2 

th2=1  th2 =1 
+a=2,i=1 a=2,i=2 

= 
2 

We note the “average travel time for cars and trucks” means the “average” of car travel time and truck travel 
165 time, respectively. It is also possible to consider the weighted average of travel time by car and truck fow together, 

which will be discussed in section 2.6. 

2.4. MCDODE formulation 
The formulation for multi-class dynamic origin-destination estimation (MCDODE) is presented in Equation 10. 

⎛ ⎛ ⎞⎞
 XX X ⎜ 2 ⎛ ⎞X⎜⎜⎜  ⎜ ⎜⎜ X X X ⎟⎟⎟ X⎜ XX X ⎟2⎜ 0 bh2 ⎜⎜ ka kh1 h1 ⎟⎟⎟   ⎟⎟ ⎜⎜ ⎟⎟min w1 ⎜⎜y −b  L ⎜⎜ ρ rsi(h1, h2)p ⎟⎟⎟⎟⎟⎟ + q  ⎜w2 ⎜z0  ⎜⎝ −e  r si Meh2 ⎟

h ai  si r th2

 ai ai ⎠⎟⎟1{
⎝ ⎝ ⎠⎠

q }rsi i,r,s,h1 b∈B i∈D a∈A h2∈H rs∈Kq k∈Krs h1∈H e∈E i∈D a∈A h2∈H � � 
s.t.   ckh

{th2 , 1 ka, ρ  
   (h1, h2)} = Λ  k{rsi (  r f h1 }ai si i,r,s,k,h1 )

r,s,i,k,a,h ,h rsi 1 2 

f kh1 pkh1 , q
h

=  1  ∀rsi rsi rsi rs  q  k ∈ K� �∈ K , rs, i ∈ D, h1 ∈ H 
p kh1 k kh

= Ψ c̃ 1 th
, 1

    ̃  
ai , ∀rs ∈ Kq, k ∈ Krs, i ∈ D, h1 ∈ r H rsi rsi si

qh1 ≥ , ∀  ∈ , ∈ ,  ∈ rsi 0 rs Kq h1 H i D
(10) 

where y0 and z0b e are the observed fow and travel time data collected from real-world. The link/path travel time can 
170 be computed through tracking cumulative curves in the DNL model (Lu et al. 2013), and the computation for DAR 

will be discussed in section 3.2. The parameters w1 and w2 are the weight for each objective, respectively. 
Equation 10 is a bi-level optimization problem with upper level minimizing the 2`  norm between observed 

and estimated fow and travel time, and the lower level solves the traffc assignment problem denoted by function 
k k Ψ · Λ · Ψ ·, ·rsi ( ) and ( ). When rsi (  ) represents the Dynamic User Equilibrium (DUE) conditions, Equation 10 is a

175 Mathematical Program with Equilibrium Constraints (MPEC) problem. In contrast, when k Ψrsi (·, ·) represents the
Logit-model, Equation 10 can be formulated as either a bi-level optimization problem or a single-level non-linear 
optimization problem (Davis 1994, Ma & Qian 2018a). 

Additional data sources, such as the historical OD demand and survey data, can also be used in the demand 
estimation. The DODE methods with these data have been extensively studied (Zhang et al. 2008, Wu et al. 2018). 

180 This paper focuses on the computational graph approach with observed traffc fow and travel time data, while 
other data can be potentially incorporated into the proposed framework. 

The solution algorithm for the bi-level problem has been extensively studied over the past few decades. Various 
heuristic methods have been developed to solve the bi-level problem effciently. For example, heuristic iterative 
algorithms between lower and upper problem are widely used in traffc applications (Yang 1995). Sensitivity 

185 analysis of the traffc assignment problem has been adopted to evaluate the gradients of bi-level problem. Lu 
et al. (2013) estimated the gradient of path fow using the dynamic network loading models, and Balakrishna et al. 
(2008) approximated the gradient of OD demand through stochastic perturbations. Osorio (2019) approximate the 
gradient by linearizing the dynamic traffc assignment models. All the studies mentioned above aim at fnding the 
gradients of the OD demand for the bi-level formulation. In this paper, we propose to evaluate the gradient of 

190 OD demand analytically through the forward-backward algorithm on a computational graph, and details will be 
described in section 2.6. 

2.5. Vectorizing the MCDODE formulation 
First of all, the variables involved in the MCDODE formulation are vectorized, and the vectorization is per-P

formed for each vehicle class separately. We set N = |H| and denote the total number path as Π = |rs Krs|, 
195 K = |Kq|. The vectorized variables are presented in Table 2. 
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Table 2: MCDODE framework variable vectorization 

Variable Scalar Vector Dimension Type Description 

OD fow 

Path fow 

hqrsi 

f kh 
rsi 

qi 

fi 

RN|K| 

RNΠ 

Dense 

Dense 

hq is place at entry (h − 1)|K| + krsi 

f kh is placed at entry (h − 1)Π + krsi 

Link fow 

Link travel time 

Path travel time 

hxai 

th 
ai 

khcrsi 

xi 

ti 

ci 

RN|A| 

RN|A| 

RNΠ 

Dense 

Dense 

Dense 

hx is placed at entry (N − 1)|A| + kai 

th is placed at entry (N − 1)|A| + kai 

khc is placed at entry (N − 1)Π + krsi 

Observed fow yb y R|B| Dense yb is placed at entry b 

Observed travel time ze z R|E| Dense ze is placed at entry e 

ρka RN |A|×NΠ ρkaDAR matrix (h1, h2) ρi Sparse (h1, h2) is placed at entry [(h2 −rsi rsi 
1)|A| + a, (h1 − 1)Π + k] 

kh RNΠ×N|K| khRoute choice matrix p pi Sparse prsi is placed at entry [(h − 1)|Π| +rsi 
k, (h − 1)|K| + rs] 

Lbh R|B|×N||A| LbhObservation/link in- Sparse is placed at entryai Li ai 
cidence matrix [b, (h − 1)|A| + a] 

Meh R|E|×N||A| MehLink travel time por- Mi Sparse is placed at entryai ai 
tion matrix [e, (h − 1)|A| + a] 

With the vectorized variables, Equations 7, 8 and 9 can be rewritten in Equation 11. 

xi = ρipiqi, ∀i ∈ D P 
y = (11)P i∈D Lixi 

z = i∈D Miti 

Multiplications between sparse matrix and sparse matrix, sparse matrix and dense vector are very effcient, 
especially on multi-core CPUs and Graphics Processing Units (GPUs). Therefore, Equation 11 can be evaluated 
effciently. The MCDODE formulation in Equation 10 can be cast into the vectorized form presented in Equa-

200 tion 12. ⎛
 
  2⎞ ⎛
 
 ⎞ ⎜
 X 
 
 
⎜
 
 ⎟⎟ ⎜
 X⎜ ⎟ ⎜⎜  
2⎟⎟
 
 ⎜⎜
 ⎟ ⎟min w1 ⎜⎜ y0 
 ⎜ ⎟
 

 − Lixi 
 ⎟⎟
 ⎟ + w2 z0 ⎜⎜
 − Miti 
 ⎟⎟

{ }
⎜

i i ⎝
 
 ⎠ ⎝

 
 ⎠⎟q  
i∈D 


2 i∈D 2 

s.t. {ti, ci, ρi } = Λ({i fi}i) (12)
fi = piq ∀i i ∈ D 
xi = ρifi ∀i ∈ D 
p = Ψi ({ci}i, {ti} i) ∀i i ∈ D 
q ≥ 0 ∀i ∈i  D 

where Ψi ({ci}i, {ti}i) is the vectorized route choice function for vehicle class i. We further substitute the path fow 
and link fow to the objective function, as presented in Equation 13. ⎛
 
2⎞ ⎛
 
 ⎞ ⎜
 

 
 ⎟ ⎜⎜
⎜ X ⎟ 
 X 
2⎜⎜ 
 ⎟⎟
 0 
 ⎟⎟⎟ ⎜⎜  

 ⎜ 
min w ⎜

y − L ρ p q 
 ⎟ 

 ⎟ + ⎜⎜⎜ w ⎜
z0 
 ⎟⎟t 
 ⎟⎟
q 1 
{ i 

⎝ − M
}

⎟
i 
 i i i i 
 ⎠ 2 ⎝
 i i 
 ⎠ 

i∈D 2 i∈D 2 
(13) 

s.t. {ti, ci, ρi }i = Λ({fi}i) 
pi = Ψi ({ci}i, {ti}i) ∀i ∈ D 
q ≥i  0 ∀i ∈ D 
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2.6. A computational graph for MCDODE 

In order to solve the MCDODE problem, our goal is to obtain the gradient of OD demand for formulation 13. 
205 In this section, we propose a novel approach to obtain the gradient of OD demand through the forward-backward 

algorithm on a computational graph. First we cast equation 13 into a computational graph representation, and 
Figure 2 describes the structure of the computational graph for MCDODE. The forward-backward algorithm runs 
on the computational graph, and algorithm consists of two processes: the forward iteration and the backward 
iteration. 

210 In general, the forward iteration assumes that OD demand is fxed and it solves for the network conditions, 
while the backward iteration assumes the network conditions are fxed and it updates the OD demand. The whole 
process of forward-backward algorithm resembles some heuristic methods that solve the upper level and lower 
level problem iteratively (Yang 1995). However, the proposed algorithm can evaluate the instantaneous gradient 
of OD demand analytically in the backward iteration. 

215 Forward iteration: Forward iteration takes multi-class OD demand as the input and solves the traffc assignment 
problem presented in Equation 14. 

fi = p ∀iq ∈i i  D 

{ti, ci, ρi }i = Λ({fi}i) (14) 
p Ψi ({ci}i = i, {ti}i) ∀i ∈ D 

The forward iteration includes the multi-class dynamic network loading models Λ and route choice models 
{Ψi}i. The output of the forward iteration is route choice portion pi, DAR matrix ρi and link/path travel time (ti, ci). 
We omit the solution method for traffc assignment problem, as it has been extensively studied in many literature 

220 (Peeta & Ziliaskopoulos 2001). After solving the dynamic traffc assignment models, the forward iteration compute 
the objective function (loss) in formulation 13, which can be represented by a series of equations in Equation 15 
and 16. 

L = w1L1 + w2L2 (15) 

L y01 = k − y 2 
kz0 − z 2 P k L 2 2 = P k 2

y = i∈D Lixi z = i∈D Miti 

xi = ρifi {ti}i = Λ̄ ({xi}i) (16)
fi = piqi xi = ρifi 

fi = piqi 

where y0 is the observed fow and y is the reproduction of the observed fow estimated from the traffc assignment 
model. Similarly, z0 is the observed travel time and z is the reproduction of the observed travel time estimated from 

225 the traffc assignment model. We use Λ̄ to represent a part of the function Λ, and Λ̄  takes dynamic link fow as 
input and outputs the link travel time {ti}i. Precisely, Λ̄  represents the dynamic link models (Zhang et al. 2013, Jin 
2012). 

Backward iteration: The backward iteration searches for the gradient of OD demand for formulation 17 with 
the route choice portion p , DAR matrix ρi and travel time {i ci, ti}i known from the forward iteration. ⎛
 
 ⎞ ⎛
 
 ⎞ ⎜
 
 
 
⎜⎜
 X 
2 ⎟

0 ⎜⎜⎜
 X 
2 ⎟
 ⎟⎟  ⎜
 ⎟ ⎜
 
 ⎟⎟
min w1 ⎜⎜
y 
 ⎟⎜ − Liρipiqi ⎟ + w2 ⎜⎜⎜ 0 ⎟
z Miti 
 ⎟

 ⎟
}

⎟ − 
{

⎟qi i ⎝
 
 
 

 
 ⎠ ⎝
 
 ⎠ 
i∈D i∈D (17)

2 2 

q ≥i  0 ∀i ∈ D 

230 When the gradient of OD demand is known, a projected gradient descent method can be used to solve Equa-
tion 17. The reason we call the solution process for Equation 17 a “backward iteration” is that, the gradient of OD 
demand for Equation 17 can be evaluated through the backpropagation (BP) method. Taking the derivative of the 
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objective function step by step, we have a series of equations presented in Equation 18 

∂L ∂L = w1 =
∂L

 w21 ∂L2 

∂L �
yy

1 = 2 0
P � L � P

 
 ∂ �

− ρ
∂

 i0 L  ∈D z
2

i0 i0 pi0 qi0 =
∂

 2  z0 − i0∈D Mi0 ti0

∂L1  T ∂L ∂ T 
x

L ∂L= − y
1

∂
L   

 

t
2 = − 2

i i ∂ ∂
Mi ∂i z 

(18) 
∂L1 T ∂L ∂L ∂Λ̄ ({x } ) ∂L

f = ρ 1 2 = i i

∂ ∂t
2

∂
 i 

i xi ∂xi ∂xi i

∂L
q

1 T ∂L1 ∂L2 Tρ  ∂
∂

p  L= = 2

i i ∂∂f f  
i xii ∂ i

∂L2  pT ∂
q

L= 2
∂ i i ∂fi 

Combining the equations in 18, the gradient of OD demand is presented in Equation 19. 

∂L 
q

∂L ∂L1 ∂L ∂L= 2 
∂

 
∂L1 ∂ ∂Li q + 

i 2 ∂q� i
¯T T T 0

P � x � P � (19) 
= −2w1p ρ − Li y  i0∈ −i i D Li0 ρi0 pi0 qi0  2w T T

2p  T ∂Λ ({ i}i)  ρi i ∂ i 
Mi z Mx

0 − i0 t0 ∈D i0 

235 The forward-backward algorithm is illustrated in Figure 2. The solid arrow represents the forward iteration and 
the dashed arrow represents the backward iteration. We omit the forward and backward iterations for historical OD 
data, while the other processes are described above. The forward and backward iterations for historical OD data P 
 

 
2 
are straightforward by adding w3L3 = w 0

3 
q −i∈D 
i  qi  
to the MCDODE formulation 13 (Zhang et al. 2008).2

Figure 2: An illustration of the forward-backward algorithm. 

To solve the MCDODE formulation in Equation 12, we run the forward-backward algorithm to compute the 
240 gradient of OD demand. Then the projected gradient descent method is used to update the OD demand. There is a 

family of gradient-based methods that can be used, and we will discuss them in section 3.4. Comparisons among 
different methods will also be conducted in the numerical experiments. 

Our computational graph approach shares many similarities with the deep learning models: 1) both models 
contain high dimensional parameters; 2) multi-core CPU and GPU can be used to speed up the solution process; 

245 3) many advanced variants of gradient-based method can be used to solve the models; 4) Backpropagation method 
can be used to evaluate the gradient layer by layer (Rumelhart et al. 1985, Wu et al. 2018). Potentially, all the 
techniques used in the training for deep learning can be used for the proposed computational graph. In this paper, 
we will test the advanced gradient-based method and multi-processing, while leaving other techniques, such as 
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dropout (Gal & Ghahramani 2016), transfer learning (Pan & Yang 2010) and regularization (Neyshabur et al. 
250 2014) for future research. 

There are many fexible ways to incorporate observed data in the backward-forward algorithm. For example, 
it is possible to view the vehicle trajectories as samples from path fow and incorporate the trajectory data into 
the computational graph. We can also compute the weighted average speed for cars and trucks to reproduce the 
“average link travel time” since the network conditions (fow, travel time) are fxed in the backward iterations. 

255 Hence the question left in Example 1 is answered. 
As for the stopping criteria, we frst claim Proposition 1 holds by the defnition of the forward-backward 

algorithm. 

Proposition 1. In the proposed forward-backward algorithm, the DAR matrix, route choice portions and link/path 
travel time do not change if and only if ∂ ,

∂q
L = 0  ∀i during the forward and backward iterations. 

i 

260 Proposition 1 indicates that the forward-backward algorithm converges when either of the following two con-
ditions hold: 1) in the forward iteration, the DAR matrix, route choice portions and link/path travel time do not 
change; 2) in the backward iteration, ∂L =

∂q  0. During the forward-backward algorithm, we can either monitor the 
i 

change of DAR matrix, route choice portions and link/path or the change of the gradient of OD demand. We can 
also see that the forward-backward algorithm converges to the local minimum for formulation 13 in Proposition 2. 

265 Proposition 2. When the forward-backward algorithm converges, the estimated OD demand {q }i i is a local mini-
mum for formulation 13. 

Proof. When the forward-backward algorithm converges, we know ∂q
L =
∂

 0 by Proposition 1. Since formulation 17
i 

is convex, 
2∂ L
∂q2 � 0. Therefore, {q }i i is the local minimum solution. 

i 

3. Solution Algorithms 

270 In this section, we frst discuss several practical issues to complete the MCDODE framework with the forward-
backward algorithm. We develop a multi-class traffc simulation package called MAC-POSTS for the network 
loading function Λ(·), and a Growing Tree algorithm is proposed to obtain the DAR matrix. Secondly, we discuss 
how to evaluate the derivative of link travel time in dynamic networks. Thirdly, we present how to incorporate 
multi-day observation data in the proposed MCDODE framework with multiprocessing. Lastly, the whole frame-

275 work for MCDODE is presented. 

3.1. Multi-class traffc simulation 
The dynamic network loading function Λ(·) is fulflled with the mesoscopic multi-class traffc simulation pack-

age Mobility Data Analytics Center - Prediction, Optimization, and Simulation toolkit for Transportation Systems 
(MAC-POSTS) developed by the Mobility Data Analytics Center at Carnegie Mellon University. To simulate het-

280 erogeneous traffc with multi-class vehicles like cars and trucks, the simulation package captures fow dynamics 
and outputs the traffc metrics for multi-class vehicles. The fow metrics include the traffc volumes, traffc speed 
and travel time. Due to the page limitation, more details about the mesoscopic multi-class traffc simulation model 
in MAC-POSTS is presented in (Qian et al. 2017, Pi et al. 2018). 

With the multi-class dynamic OD demand known, the mesoscopic multi-class traffc simulation model per-
285 forms the following steps orderly in every loading interval (e.g. fve seconds): 

1. Vehicle generation: multi-class vehicles are generated at origins according to the traffc demand. 

2. Routing: the route choice behaviors of all vehicles are updated, according to the route choice models. 

3. Node evolution: cars and trucks are moved through intersections following the intersection fow model. 

4. Link evolution: cars and trucks are moved on links following the link fow model. 

290 5. Network fow statistics: the model records link fow counts, link speeds, travel time and other network 
performance statistics. 
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We note the loading interval is different from the interval defned in this paper, since loading interval is usually 
much shorter. After running the simulation, the route choice portion pi and link/route travel time (ti, ci) for each 
vehicle class can be obtained based on the simulation results. The DAR matrix ρi for each vehicle class can also be 

295 obtained by constructing the tree-based cumulative curves during the simulation process, and details are presented 
in section 3.2. 

3.2. Tree-based cumulative curve 

In this section, we develop a novel method to compute the DAR matrix during the traffc simulation. Comput-
ing the DAR matrix during the simulation is more effcient than obtaining the DAR matrix after the simulation. 

300 However, computing the dynamic assignment ratio (DAR) during the traffc simulation is challenging. A naive 
method to obtain the DAR matrix is by recording the trajectories of all simulated vehicles in the DNL process. 
This method iterates across all paths and links over all time intervals, and in each iteration the method computes 
the number of vehicles arriving at a specifc link from a specifc path. Since the dimension of DAR matrix in-
creases exponentially with respect to the size of network and the number of time intervals, the naive method is 

305 computational implausible for large-scale networks. In this section, we propose a novel method to compute the 
DAR matrix through the tree-based cumulative curves, and the proposed method is effcient in both computational 
time (time complexity) and memory (space complexity). 

We defne khχ 1 (· ) arsi as the tree-based cumulative curve of link a for class-i vehicles departing from path k in OD 
pair rs in time interval h . kh1

1 χ  (t) takes the time t arsi as input and outputs the total number of vehicles departing in 
310 time interval h1 from path rsk and arriving at link a before time t. Then the DAR can be computed by Equation 20. 

khχ 1
 (t2) − khχ 1 

 (t2) 
ka arsi arsi
ρ (h1, =rsi  h2)  (20) 

f kh1 
rsi 

where t2 is the beginning of time interval h2 and t2 is the end of time interval h2. 
We note that khχ 1 (· ) arsi records the cumulative curves for each path fow and departing time interval separately, 

and hence it requires more memory and computational power than the standard link-based cumulative curve (Lu 
315 et al. 2013). However, only a very small fraction of vehicles pass a specifc link a during the simulation. There are 

only a small fraction of paths containing a specifc link, and hence the khχ 1 (·  arsi ) is sparse in terms of path indices rsk 
and time indices h1. Using this intuition, we develop a Growing Tree algorithm to build the tree-based cumulative 
curve kh khχ 1 (·) for each link a. Since the algorithm is tree-based, so we refer χ 1

ar (·) si arsi as the tree-based cumulative 
curves. 
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320 The process of the Growing Tree algorithm is presented in Algorithm 1. 

Algorithm 1: Growing Tree algorithm for constructing khχ 1 (·arsi )

1 GrowingTree (S , n); 
Input : Traffc simulator S , number of loading intervals n 
Output: Tree-based cumulative curves χ 

2 Initialize an empty dictionary χ; 
3 for (i = 0; i < n; + +i) do 
4 Run the simulator S for one loading interval; 
5 for a ∈ A do 
6 Initialize an empty dictionary χ[a]; 
7 Extract the set of vehicles going in link a and denote it as Q; 
8 for v ∈ Q do 
9 Suppose vehicle v follows path k in OD pair rs and departs in time interval h1 and the vehicle 

class is i; 
10 if i is not the key of dictionary χ[a] then 
11 Initialize χ[a][i] with an empty dictionary; 
12 end 
13 if h1 is not the key of dictionary χ[a][i] then 
14 Initialize χ[a][i][h1] with an empty dictionary; 
15 end 
16 if rsk is not the key of dictionary χ[a][i][h1] then 
17 Initialize χ[a][i][h1][rsk] with an empty cumulative curve; 
18 end 
19 Add record (i, 1) to the cumulative curve χ[a][i][h1][rsk]; 
20 end 
21 end 
22 end 

In the algorithm, a record (i, 1) means one vehicle arriving at the link a at time t. khχ 1
arsi(·) is constructed as 

a tree, as presented in Figure 3. During the construction, when a vehicle transverses a link, a leaf containing a 
standard cumulative curve is either created or updated to record the location of that vehicle. The tree khχ 1 (·) arsi is

325 unbalanced, so a hashmap-based tree is more memory effcient. In Algorithm 1, a dictionary refers to a key-value 
mapping implemented by hashmap, and readers can view the dictionary as one of the following data structures: 
dictionary in Python, HashMap in Java, or unordered map in C++. 

3.3. Derivatives of link travel time 
¯ xIn the backward iteration described in section 2.6, we need to compute the derivatives of link travel time ∂Λ ({ i }i)
∂x .

i

330 The function Λ̄  represents the link fow models which include, but is not limited to, point queue, spatial queue, 
cell transmission model, link transmission model and link queue model (Jin 2012, Zhang et al. 2013). There is no 
closed-form for link fow models, hence the derivatives of function Λ̄  can be challenging to evaluate analytically. 
In contrast, there exists methods to approximate the link travel time derivatives for the simulation-based models, 
and the basic idea of this kind of methods is to examine the extra link travel time induced by a marginal vehicle 

335 added to the link. Readers are refereed to Qian et al. (2012), Lu et al. (2013) for the implementation details. In this 
∂Λ ̄ ({xpaper, we adopt the approximation approach discussed in Lu et al. (2013) to evaluate i}i)
∂x .

i 

3.4. Incorporating multi-day observations with multiprocessing 

From formulation 13, the multi-class demand is estimated with one data sample (y0 , z0). In real world applica-
tions, we may observe the fow and travel time on multiple days. Suppose we collect data samples for M days and 

0
340 we let (y  

m, z0 m ) denote the observed fow and travel time on day m, then the MCDODE problem 13 can be extended 
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Figure 3: An illustration of the Growing Tree algorithm. 

to accommodate multi-day observations in formulation 21 ⎡ ⎛ 
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 ⎟⎥
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i 1≤m≤M i∈D 2 i∈D 2 
(21) 

s.t. {ti, ci, ρi } { }i = Λ( fi i) 
pi = Ψi ({ci}i, {ti}i) ∀i ∈ D 
q ≥ ∀i  0 i ∈ D 

Formulation 21 can be directly solved using the forward-backward algorithm. We only need to compute the 
gradients of OD demand for each data sample and use the average gradient over all data samples to update the OD 
demand during the backward iteration. This process is the same as Gradient Descent (GD) method. In addition, 

345 the stochastic gradient descent (SGD) method can also be used to solve formulation 21. In the process of SGD, 
we evaluate the gradient of OD demand for one randomly selected data sample and then use it to update the OD 
demand. The comparisons between GD and SGD exist in many machine learning models, readers are refereed to 
(Saad 1998) for more details. Many advanced gradient descent methods can also be used to solve formulation 21. 
For example, Adagrad is one of the most representatives of variants of SGD with adaptive step sizes, and it is often 

350 used in the optimization of deep neural networks (Duchi et al. 2011). 
We can further speed up the solution process for formulation 21 by utilizing the power of multiprocessing. The 

delayed stochastic gradient descent (delayed-SGD) method can evaluate the gradient of multiple data samples on 
a multi-core CPU at the same time (Zinkevich et al. 2009). Each core is responsible for evaluating one single data 
sample at one time. Comparing to the traditional SGD, the delayed-SGD makes full use of the multi-core CPU 

355 and hence it can solve the MCDODE framework more effciently. It is also possible to extend Formulation 21 to 
incorporate multi-day data that are observed on different links. To do that, we can replace Li and Mi to Lim and 
Mim for each day m separately. 

3.5. Solution framework 

The solution algorithm for MCDODE is summarized in Table 3. 
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Algorithm [MCDODE-FRAMEWORK] 
Step 0 
Step 1 

Initialization. Initialize the OD demand vector {qi}i for each vehicle class. 
Forward iteration. Solve the traffc assignment model presented in equation 14 with 
OD demand {qi}i, and construct the tree-based cumulative curve χ through Growing 
Tree algorithm presented in Algorithm 1. 

Step 2 Variable retrieval. Extract the link/path travel time from the simulation model, com-
pute the route choice matrix from route choice model by Equation 4, and obtain the 
DAR matrix from the tree-base cumulative curves by Equation 20. 

Step 3 Backward iteration. Compute the gradient of OD demand using the backward itera-
tion presented in Equation 18 and 19. 

Step 4 Update OD demand. Update the OD demand with the gradient-based projection 
method discussed in section 3.4. 

Step 5 Convergence check. Stop when the change of OD demand {qi}i is less than tolerance. 
Otherwise, go to Step 1. 

Table 3: MCDODE solution framework 

360 4. Numerical Experiments 

In this section, we frst examine the proposed MCDODE framework in a small network. Estimation results are 
presented and discussed. We examine the effects of multiprocessing, compare different variants of gradient descent 
methods, and conduct the sensitivity analysis of the MCDODE framework. In addition, the effectiveness, effciency 
and scalability of the MCDODE framework are demonstrated in a large-scale network. All the experiments in this 

365 section are conducted on a desktop with Intel Core i7-6700K CPU 4.00GHz × 8, 2133 MHz 2 × 16GB RAM, 
500GB SSD. 

4.1. A small network 

We frst work with a small network with seven links, three paths and one O-D pair, as presented in Figure 4. 
Two classes of vehicles are considered: cars and trucks. Link 1 and Link 7 are OD connectors, and we use the 

370 identical triangular fundamental diagram (FD) for the rest of 5 links. In the FD, length of each road segment is 
0.55 mile, free fow speed is 35 miles/hour for car and 25 miles/hour for truck, fow capacity is 2,200 vehicles/hour 
for car and 1,200 vehicles/hour for truck, and the holding capacity is 200 vehicles/mile for car and 80 vehicles/mile 
for truck. 

Figure 4: A small network. 

We generate the multi-class dynamic OD demand by random number generators and then treat it as the “true” 
OD demand. We generate the observed fow by running the multi-class network simulation model and then adding 
the noise. The performance of the MCDODE estimation formulation is assessed by comparing the estimated fow 
with the “true” fow (fow includes observed fow, link fow, OD demand) (Antoniou, Barceló, Breen, Bullejos, 
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Casas, Cipriani, Ciuffo, Djukic, Hoogendoorn, Marzano et al. 2015). We use R-square between the “true” fow 
(travel time) and estimated fow (travel time) to measure the estimation accuracy. 

380 Baseline setting: in the small network, we randomly sample the “true” car and truck OD demand from uniform 
distributions Unif(0, 300) and Unif(0, 60), respectively. We randomly generate the route choice portions and 
treat them as unknown, then we run the MAC-POSTS Λ to obtain the “true” network conditions. We construct the 
observed fow as follows: frstly we randomly generate the matrix {Li}i by a Bernoulli distribution with p = 0.5 
for link 3, 4, 5, 6 and leave the fow of link 2 hidden from all observations; secondly we aggregate the “true” link 

385 fow to obtain the observed fow by {Li}i; thirdly we multiply 1 + ε to the “true” observed fow to get the observed 
fow with noise, where ε ∼ Unif(−ξ, ξ) and ξ ∈ [0, 1) represents the noise level. We consider 10 time intervals, 
and each time interval represents ffteen minutes. We set |B| = 10, and 6 observations are from car fow and 4 
observations are from truck fow. Assuming we directly observe the travel time for link 3, 4, 5, 6 for cars and trucks 
separately, {Mi}i and E can be constructed accordingly. We set w1 = 1, w2 = 0.01. We also add noise to the 

390 observed link travel time using the same method as observed fow. We observe 8 data samples M = 8 and the 
noise level ξ = 0.1. We use single-process Adagrad with step size 1 as the solution method, and the initial OD 
demand is generated from Unif(0, 15) and Unif(0, 3) for car and trucks, respectively. The above setting is called 
the baseline setting. 

4.1.1. Basic estimation results 
395 In this section, we examine the basic estimation results of the proposed MCDODE framework for the baseline 

setting. We run the MCDODE framework presented in section 3.5 until convergence. The change of loss L against 
the number of iterations using Adagrad is presented in Figure 5. 

Figure 5: Convergence curve for the loss L 

To analyze the convergence of the observed fow and travel time separately, we decompose the loss L into four 
components: car fow, car travel time, truck fow and truck travel time. We plot the loss for the four components 

400 separately, and the results are presented in Figure 6. Note we normalize the loss such that it is between 0 and 1. 
The comparisons between the “true” and estimated values for observed fow, link fow, link travel time and OD 

demand are presented in Figure 7, 8, 9 and 10, respectively. 
The R-squares between the “true” and estimated fow (travel time) are presented in Table 4. The proposed 

MCDODE framework yields accurate estimation of the multi-class dynamic OD demand in the small network. 
405 The average R-squares for car fow and truck fow are above 0.98. The estimation accuracy for truck is lower than 

car, which is probably attributed to the low truck demand. Since the multi-class traffc loading model is discretized 

16 



Figure 6: Decomposed convergence curve for observed fow and travel time (normalized) 

Figure 7: Estimated and “true” observed fow for cars and trucks (unit:vehicle/15mins). 

and stochastic (Qian et al. 2017), low demand may incur a large variance in the simulation results. Therefore, the 
gradient of truck fow becomes noisy when the demand is low. 

¯ xThe R-square for the travel time is lower than that for fows, since the derivative of travel time ∂ Λ({ i}i)
∂x  

is approx-
due 

i

410 imated by the simulation rather than evaluated in a closed-form. Again, to the discretization and stochasticity 
Λ ̄of the simulation model, the approximations of ∂

 ({xi}i)
∂x can be noisy. 

i 

4.1.2. Comparing different gradient-based methods 
In this section, we examine the performance of three gradient-based methods: gradient descent (GD), stochastic 

gradient descent (SGD) method and Adagrad. We solve the MCDODE problem for the baseline setting three times 
415 using different gradient-based methods, and we plot the convergence curves for the three methods in Figure 11. 

For all three method, it takes less than 2 minutes to complete the 100 iterations. One can clearly see that SGD 
outperforms the GD throughout the 100 iterations. Though GD and SGD converge faster in the frst 20 iterations, 
the Adagrad outperforms both methods in terms of convergence rate and fnal loss after 100 iterations. The reason 
for the best performance of Adagrad is probably because Adagrad can select the step size adaptively during the 

420 solution, hence it maintains a good convergence rate throughout the 100 iterations. Adagrad is adopted as the 
standard method to solve the MCDODE formulation in the baseline setting. 
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Figure 8: Estimated and “true” link fow for cars and trucks (unit:vehicle/15mins). 

Figure 9: Estimated and “true” link travel time for cars and trucks (unit:seconds). 

4.1.3. Multiprocessing 
In this section, we demonstrate the power of multiprocessing in solving the MCDODE framework. We solve the 

baseline setting four times using different number of processes. We use the delayed version of Adagrad to enable 
425 the multiprocessing (Zinkevich et al. 2009). We examine the convergence curves for 1, 2, 4, and 8 processes and 

plot the results in Figure 12. We note that different from previous fgures, the x-axis in Figure 12 is the time rather 
than iterations. 

All four methods converges to the same optimal solution. One can see that the 1-process method converges in 
50s, 2-process method converges in 30s, and the 4-process method converges in 20 ∼ 25s. By using the multi-

430 processing, the solving time for the MCDODE framework can be reduced by at least a half. The marginal effects 
of adding processes decreases when the number of processes increases, as a result of the increasing communica-
tion costs among different processes. Since we conduct the experiments on an eight-core CPU, the eight-process 
method makes use of all computing resources of the CPU and hence it achieves the best convergence rate. 

4.1.4. Impact of data quantity 
435 In this section, we analyze the impact of number of data samples on the MCDODE framework. We solve for 

the baseline setting, while the number of data samples varies from 1 to 256. We keep track of the convergence 
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Figure 10: Estimated and “true” OD demand for cars and trucks (unit:vehicle/15mins). 

Observed fow 0.9992 0.9858 
Link fow 0.9982 0.9808 

Link travel time 0.9309 0.9586 
OD demand 0.9965 0.9940 

Car Truck 

quare between the “true” and estimated fow and travel time forTable 4: R-s  cars and trucks 

curves for different number of data samples, the results are plotted in Figure 13. 
As can be seen from Figure 13, the convergence rate increases when the number of data sample increases. The 

solution method with one data sample does not converge in 100 iterations while the solution method with 256 data 
440 samples converges within 10 iterations. In the large-scale networks, limited number of iterations can be conducted 

due to the lack of computational resources and time constraints, hence more data samples are usually required to 
ensure estimation accuracy. 

4.1.5. Impact of noise level 
We further demonstrate the impact of noise level on the proposed solution algorithm. We solve the MCDODE 

445 framework for the baseline setting, while we change the noise level from 0 to 0.9. The convergence curves under 
different noise levels are presented in Figure 14. 

One can see from Figure 14 that the noise level has a signifcant impact on the estimation accuracy of the 
multi-class OD demand. When there is no noise in the observed data, the estimation method can converges to 
nearly zero loss in 30 iterations. When the noise level is high, the estimation method does not converge to the 

450 optimal solution. Especially when noise level is 0.9, the loss can only be reduced by half and the R-square for the 
estimated OD is around 0.7. 

4.1.6. Sensitivity analysis 
In this section, we conduct the sensitivity analysis of the proposed MCDODE framework in terms of initial OD 

demand, “true” OD demand and step sizes. 
455 Firstly, we perform the sensitivity analysis on the initial OD demand. We solve the MCDODE framework 

for the baseline setting for 100 times. In each time, we change the initial OD demand by random generators 
Unif(0, 15) for car demands and Unif(0, 3) for truck demands. We compute the R-squares of the estimated OD 
demand for all 100 estimations and the boxplot for the R-squares is presented in Figure 15. 

As can be seen from Figure 15, the R-squares for car fow are above 0.98 and the variance is low for different 
460 initial OD demand, while the variance of R-squares for truck fow is high. Especially for link fow, the R-square 
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Figure 11: Comparison among GD, SGD and Adagrad 

between the “true” and estimated link fow for truck can be as low as 0.95. However, all the R-squares for truck 
fow are still above 0.9. The results imply that the proposed method is generally robust to the initial OD demand, 
but estimating the truck demand is more challenging than estimating the car demand. To ensure a satisfactory 
estimation result, it is desirable to run the MCDODE framework multiple times and chose the best one as the fnal 

465 OD demand. In contrast, the R-square of link travel time for car is lower than that for trucks, which is probably 
because car speeds can vary in a wide range but truck speed is relatively stable. 

Secondly, we fx the initial OD demand and solve for the baseline setting for 100 times. In each run, we 
sample the “true” OD demand from Unif(0, 300) and Unif(0, 60) for car and truck, respectively. We compute 
the R-squares of estimated OD demand for the 100 runs and the boxplot for the R-squares is presented in Figure 16. 

470 The MCDODE framework achieves satisfactory accuracy for different “true” OD demands, and most of the 
R-squares for both car and truck foware over 0.9. The R-square for truck fow is lower than that for car fow, and 
the variance of R-squares for truck fow is also higher. As we discussed above, estimating the truck OD demand is 
more challenging, as a result of the discretized and stochastic behaviors of trucks in the traffc simulation model. 
In addition, the R-squares of link travel time for cars are lower than that for trucks, which is similar to previous 

475 study for the initial OD demand. 
Thirdly, we examine the Adagrad method with different step sizes. We solve the MCDODE framework for 7 

times under the baseline setting. In each run, we vary the step size from 0.01 to 100, and the convergence curves 
are presented in Figure 17. 

One can see that the Adagrad is robust to the step size, and any step size between 0.5 and 2 can guarantee 
480 the method to converge to the optimal solution within 60 iterations. When the step size is too small, the method 

converges slowly; when the step is too large, the convergence becomes unstable and fuctuating. 
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Figure 12: Convergence curves using 1, 2, 4, 8 processes 

Figure 13: Convergence curves with different number of data samples 
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Figure 14: Convergence curves under different noise levels 

Figure 15: Boxplot for R-squares with different initial OD demand. 
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Figure 16: Boxplot for R-squares with different “true” OD demand. 

Figure 17: Convergence curves with different step sizes 
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4.2. A large-scale network: southwestern Pennsylvania region 
In this section, we perform the MCDODE on a large-scale network for the southwestern Pennsylvania region 

(Figure 18). The network covers ten counties of southwestern Pennsylvania region, with the Pittsburgh city located 
485 in the center. The approximate range of the 10 counties are marked by the black quadrangle in Figure 18. There 

are around 2.57 million population and 7,112 square miles area in the network. All parameters for the Pittsburgh 
network are listed in the Table 5. 

Pittsburgh

Figure 18: An overview of the network for the southwestern Pennsylvania region 

Table 5: Network parameters 

Name Value 
studying period (weekday) 6:00 AM - 11:00 AM 
simulation unit time 5 seconds 
Length of time interval 15 minutes 
Number of time intervals 30 
number of links 16,110 
number of nodes 6,297 
number of origins (destinations) 283 
number of origin-destination pairs 80,089 

We run the MCDODE framework with traffc fow data and travel time (traffc speed) data. The traffc fow 
data are obtained from the Pennsylvania Department of Transportation (PennDOT). The data are collected annually 
for some selected locations on the Pennsylvania state-owned roads, for each hour of the day and for one day of 
the year. The car traffc volume counts and truck traffc volume counts are collected separately, where car traffc 
volume counts are measured for all passenger cars and truck traffc volume counts includes all kinds of trucks at 
the measured location. The traffc count can be either one-directional or bi-directional. Since all count data are 
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measured in hours, in data pre-processing we smooth the hourly count data to 15-minute interval. There are 608 
495 locations in total that has valid car and truck volume counts for MCDODE. Traffc speed data are obtained Federal 

Highway Administration (FHWA) for the year 2016. The speed data are observed every 5-minutes of the day for 
highway segments, the data are also classifed to cars and trucks. We aggregate the travel time data to 15-minute 
interval. In total, there are 945 locations with valid car and truck travel time observations. 

The initial OD demands for cars and trucks are randomly generated from a uniform distribution Unif(0, 0.01) 
500 and Unif(0, 0.001), respectively. We aggregate all the traffc fow and travel time observations to a single data 

sample and use the single-process Adagrad method to solve MCDODE. The step size is e−5. We set w1 = 1, w2 = 
0.01. We use the hybrid dynamic traffc assignment model as the route choice model (Qian & Zhang 2013), the 
adaptive ratio is 0.2 for cars and 0 for trucks. The MCDODE framework runs for 55 iterations. In frst 35 iterations, 
both OD demand for car and trucks are updated simultaneously; while for the last 20 iterations, we only update the 

505 truck demand since its more challenging to estimate. 
The convergence of the proposed MCDODE framework is presented in Figure 19. Overall, the solution algo-

rithm performs well and the objective function converges fast. It takes around 25 × 55 = 1375 minutes (around 
23 hours) to complete the 55 iterations. For each iteration, the traffc simulation takes around 7 minutes, and the 
other 18 minutes are used for the demand estimation. Constructing DAR matrix is identifed as the bottleneck in 

510 the demand estimation. 

Figure 19: Convergence of the objective function for 55 iterations (OD demands for cars and trucks are updated simultaneously in frst 35 
iterations, while only truck OD demand is updated in last 20 iterations.) 

The comparisons between the observed and estimated fow are presented in Figure 20, and R-squares are 0.66 
and 0.59 for car and truck, respectively. One can see that the truck fow is roughly one tenth of the car fow, and 
the estimation accuracy for car fow is higher than truck fow. Overall, the results of the MCDODE framework is 
compelling and satisfactory for such a large network. 

515 We also plot the comparisons between the observed and estimated link speed in Figure 21. The reason we 
plot the link speed instead of link travel time is that the link travel time can vary in a wide range for large scale 
networks, but link speed usually varies between 20 to 80 miles/hour. Hence, visualizing the link speed is more 
straightforward and legible. 

The R-squares between the observed and estimated link speed are 0.45 and 0.51 for car and truck, respec-
520 tively. One can see that the estimation accuracy of traffc speed is not as good as the traffc fow, which is probably 

¯ xattributed to unsatisfactory approximations of the link travel time derivatives ∂ Λ({ } )
∂x

i i in dynamic networks. Im-
proving the approximation quality for the link travel time will be left for the future research. 

i 

In addition, the estimation uses the randomly generated OD demand as the initial point for the MCDODE 
framework. If prior knowledge of the OD demand can be obtained from traditional planning models, the estimation 

525 accuracy might further be improved. The estimated multi-class OD demand is further used to study the impact of 
a development project in Pittsburgh, and details are presented in Pi et al. (2018). 
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Figure 20: Estimated and observed fow for cars and trucks (unit:vehicle/15mins) 

Figure 21: Estimated and observed fow for cars and trucks (unit:miles/hour) 
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5. Conclusion 

This paper presents a data-driven framework for multi-class dynamic origin-destination demand estimation 
(MCDODE) using observed traffc fow and travel time data. The traffc data can be any linear combinations of fow 

530 characteristics (e.g. counts, time or travel time) across vehicle classes, road segments and time intervals. All the 
characteristics involved in the MCDODE formulation are vectorized, and the proposed framework is represented on 
a computational graph. The computational graph can be solved effciently through a forward-backward algorithm 
for large-scale MCDODE problems. In the forward iteration, the dynamic traffc assignment problem is solved, 
and the loss (objective function) is computed through a series of equations. In the backward iteration, the OD 

535 demand is updated by the backpropagation method with the route choice matrix, DAR matrix and route travel time 
known from the forward iteration. The MCDODE formulation is solved when the forward-backward algorithm 
converges. 

Practical issues related to MCDODE framework are discussed. We adopt a mesoscopic multi-class traffc 
simulation package MAC-POSTS to solve for the spatio-temporal path/link fow. The DAR matrix is highly sparse, 

540 and thus we propose novel tree-based cumulative curves from MAC-POSTS to construct the sparse DAR matrix. 
We incorporate multi-day observation data to the MCDODE framework, and different variants of gradient-based 
solution algorithms are discussed and compared. 

The proposed MCDODE framework is examined on a small network as well as a real-world large-scale net-
work. The objective function converges quickly with the Adagrad method. We also conduct the sensitivity analysis 

545 of the estimation accuracy with respect to initial OD demand, “true” OD demand, and step sizes. Overall, the es-
timation results are compelling, satisfactory and robust, and the forward-backward algorithm is computationally 
plausible for large-scale networks. The estimated multi-class dynamic OD demand can help policymakers to bet-
ter understand the dynamics of OD demand and the spatio-temporal distribution of vehicles in terms of different 
classes. 

550 In the near future, we plan to improve the estimation accuracy of the MCDODE framework in the following 
two directions: 1) some prior knowledge about the dynamic OD demand can be used as the initial point for the 
solution methods. For example, we can construct the DAR matrix from the speed data directly and estimate the 
dynamic OD without running the simulation. The estimated OD demand can be used as the initial point for the 
proposed MCDODE framework (Ma & Qian 2018b); 2) the method of approximating the derivatives of link travel 

555 time under multi-class fow can be further improved. In addition, we plan to extend this research to calibrate the 
parameters in route choice models as well as the fundamental diagrams, thanks to the versatile computational graph 
framework. We also plan to extend this research to estimate the probabilistic distribution of multi-class dynamic 
OD demand and explore the spatio-temporal characteristics of dynamic OD demand. 

Supplementary materials 

560 The mesoscopic multi-class traffc simulation package MAC-POSTS 1 and the MCDODE framework 2 are 
implemented and open-sourced on Github. 
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